Microcellular Foaming of Cellulose acetate Binder-based Combustible Objects by Supercritical CO₂

WEITAO YANG

XI'AN MODERN CHEMISTRY RESEARCH INSTITUTE

XI'AN, SHAANXI, CHINA

E-MAIL: njyangweitao@163.com

BACKGROUND

Foamed Combustible constituent:

Weight reduction

No burden of disposing of spent metal case

Automatic firing

Adding energy

.

- **▶** Combustible cartridge cases
- Caseless ammunition

Felt-moulding
Winding
Rolling
RIM process

.

Rolling case

Felted case

Foamed propellants from ICT

Temperature-pressure phase transition of pure substance

FABRICATION PROCESS

SOLVENT METHOD

RDX (60% to 70%)

CA (Cellulose acetate)

DBP (Dibutyl phthalate)

MICROCELLULAR FOAMING PROCESS

INNER STRUCTURES

Unfoamed sample

Foamed sample

HETEROGENEOUS NUCLEATION COURSE

Proposed mechanism for solid-state cell nucleation foaming process.

BURNING BEHAVIORS

p-t curves of CA-based samples with different RDX ratios $(T_f=95^{\circ}\text{C}, T_s=40^{\circ}\text{C}, P_s=15\text{MPa})$: (dotted curves are foamed samples, solid curves are un-foamed samples)

L-B curves for free-foamed samples at different saturation temperatures (T_f =95°C, T_s =40°C, P_s =15MPa): (L= dynamic vivacity, B= pressure/maximum pressure)

INFLUENCING FACTORS

Higher saturation pressure

Higher foaming temperature

Lower saturation temperature

.

ACKNOWLEDGEMENTS

High tribute shall be paid to Sanjiu Ying and Clive Woodley

THANKS

E-MAIL: njyangweitao@163.com